Chaotic behavior of disordered Hamiltonian systems

Haris Skokos

Nonlinear Dynamics and Chaos Group Department of Mathematics and Applied Mathematics University of Cape Town Cape Town, South Africa

E-mail: haris.skokos@uct.ac.za URL: http://math_research.uct.ac.za/~hskokos/

Outline

- Disordered 1D lattices:
 - ✓ The quartic disordered Klein-Gordon (DKG) model
 - ✓ The disordered discrete nonlinear Schrödinger equation (DDNLS)
 - ✓ Different dynamical behaviors
- Chaotic behavior of the DKG and DDNLS models
 - ✓ Lyapunov exponents
 - ✓ Deviation Vector Distributions
- Summary

Work in collaboration with

Bob Senyange (PhD student): DKG model

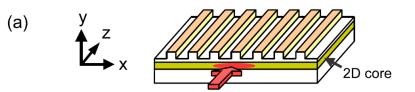
Bertin Many Manda (PhD student): DDNLS model

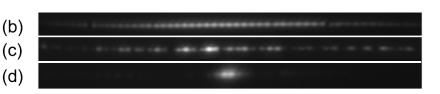
Interplay of disorder and nonlinearity

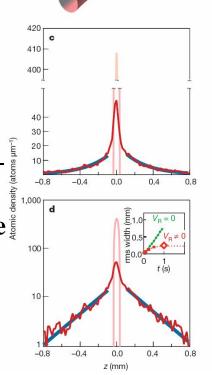
Waves in disordered media – Anderson localization [Anderson, Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)]

Waves in nonlinear disordered media – localization or delocalization?

Theoretical and/or numerical studies [Shepelyansky, PRL (1993) – Molina, Phys. Rev. B (1998) – Pikovsky & Shepelyansky, PRL (2008) – Kopidakis et al., PRL (2008) – Flach et al., PRL (2009) – S. et al., PRE (2009) – Mulansky & Pikovsky, EPL (2010) – S. & Flach, PRE (2010) – Laptyeva et al., EPL (2010) – Mulansky et al., PRE & J.Stat.Phys. (2011) – Bodyfelt et al., PRE (2011) – Bodyfelt et al., IJBC (2011)] Experiments: propagation of light in disordered 1d waveguide lattices [Lahini et al., PRL (2008)]







The disordered Klein – Gordon (DKG) model

$$H_{K} = \sum_{l=1}^{N} \frac{p_{l}^{2}}{2} + \frac{\tilde{\varepsilon}_{l}}{2} u_{l}^{2} + \frac{1}{4} u_{l}^{4} + \frac{1}{2W} (u_{l+1} - u_{l})^{2}$$

with fixed boundary conditions $u_0 = p_0 = u_{N+1} = p_{N+1} = 0$. Typically N=1000.

Parameters: W and the total energy E. $\tilde{\varepsilon}_l$ chosen uniformly from $\left[\frac{1}{2}, \frac{3}{2}\right]$.

Linear case (neglecting the term $u_l^4/4$)

Ansatz: $u_l = A_l \exp(i\omega t)$. Normal modes (NMs) $A_{v,l}$ - Eigenvalue problem: $\lambda A_l = \varepsilon_l A_l - (A_{l+1} + A_{l-1})$ with $\lambda = W\omega^2 - W - 2$, $\varepsilon_l = W(\tilde{\varepsilon}_l - 1)$

<u>The disordered discrete nonlinear Schrödinger</u> (DDNLS) equation

We also consider the system:

$$\boldsymbol{H}_{D} = \sum_{l=1}^{N} \varepsilon_{l} \left| \boldsymbol{\psi}_{l} \right|^{2} + \frac{\boldsymbol{\beta}}{2} \left| \boldsymbol{\psi}_{l} \right|^{4} - \left(\boldsymbol{\psi}_{l+1} \boldsymbol{\psi}_{l}^{*} + \boldsymbol{\psi}_{l+1}^{*} \boldsymbol{\psi}_{l} \right)$$

where ε_l chosen uniformly from $\left[-\frac{W}{2}, \frac{W}{2}\right]$ and β is the nonlinear parameter.

Conserved quantities: The energy and the norm $S = \sum_{l} |\psi_{l}|^{2}$ of the wave packet.

Distribution characterization

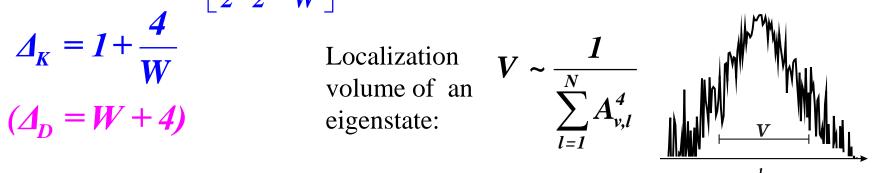
F

We consider normalized energy distributions
$$z_v \equiv \frac{-L_v}{\sum_m E_m}$$

with $E_v = \frac{p_v^2}{2} + \frac{\tilde{\varepsilon}_v}{2} u_v^2 + \frac{1}{4} u_v^4 + \frac{1}{4W} (u_{v+1} - u_v)^2$ for the DKG model,
and norm distributions $z_v \equiv \frac{|\psi_v|^2}{\sum_l |\psi_l|^2}$ for the DDNLS system.
Second moment: $m_2 = \sum_{v=1}^N (v - \bar{v})^2 z_v$ with $\bar{v} = \sum_{v=1}^N v z_v$
Participation number: $P = \frac{1}{\sum_{v=1}^N z_v^2}$

measures the number of stronger excited modes in z_v . Single site P=1. Equipartition of energy P=N.

Scales Linear case: $\omega_v^2 \in \left[\frac{1}{2}, \frac{3}{2} + \frac{4}{W}\right]$, width of the squared frequency spectrum:



Average spacing of squared eigenfrequencies of NMs within the range of a localization volume: $d_K \approx \frac{\Delta_K}{V}$

Nonlinearity induced squared frequency shift of a single site oscillator

$$\delta_{l} = \frac{3E_{l}}{2\tilde{\varepsilon}_{l}} \propto E \qquad (\delta_{l} = \beta |\psi_{l}|^{2})$$

The relation of the two scales $d_K \leq \Delta_K$ with the nonlinear frequency shift δ_l determines the packet evolution.

Different Dynamical Regimes

Three expected evolution regimes [Flach, Chem. Phys (2010) - S. & Flach, PRE (2010) - Laptyeva et al., EPL (2010) - Bodyfelt et al., PRE (2011)] Δ : width of the frequency spectrum, d: average spacing of interacting modes, δ : nonlinear frequency shift.

Weak Chaos Regime: $\delta < d$, $m_2 \sim t^{1/3}$

Frequency shift is less than the average spacing of interacting modes. NMs are weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & Shepelyansky, PRL (2008)].

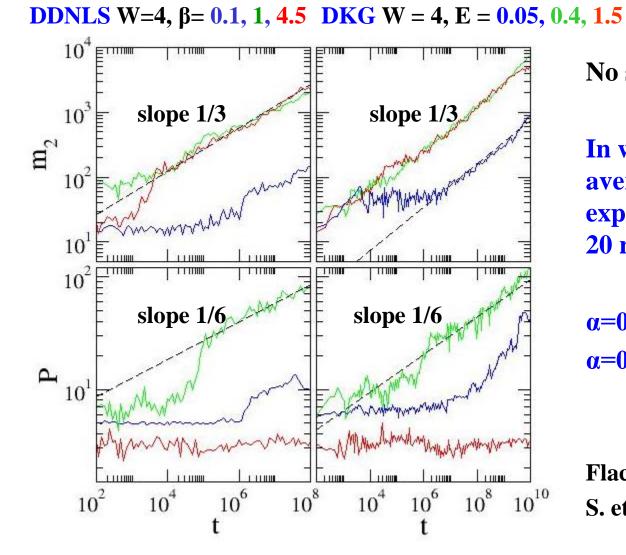
Intermediate Strong Chaos Regime: d< δ < Δ , m₂ ~ t^{1/2} \rightarrow m₂ ~ t^{1/3}

Almost all NMs in the packet are resonantly interacting. Wave packets initially spread faster and eventually enter the weak chaos regime.

Selftrapping Regime: δ>Δ

Frequency shift exceeds the spectrum width. Frequencies of excited NMs are tuned out of resonances with the nonexcited ones, leading to selftrapping, while a small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)].

Single site excitations



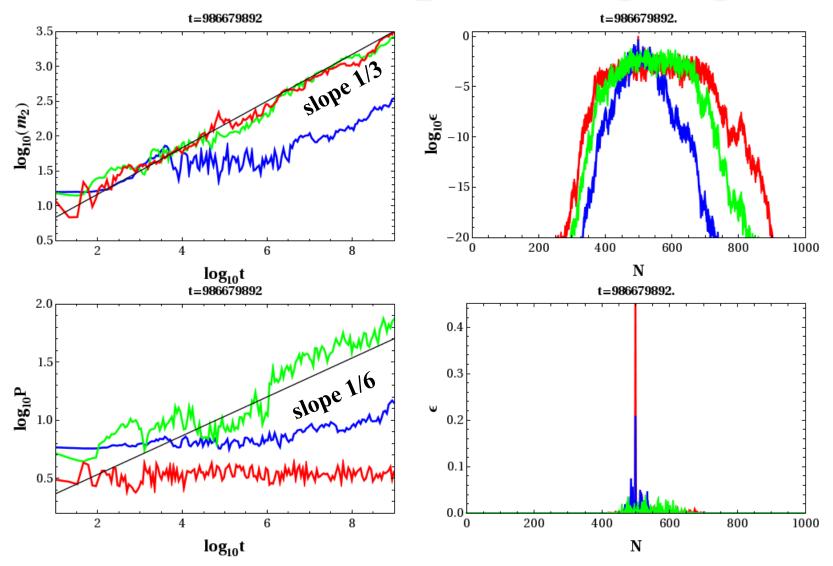
No strong chaos regime

In weak chaos regime we averaged the measured exponent α (m₂~t^{α}) over 20 realizations:

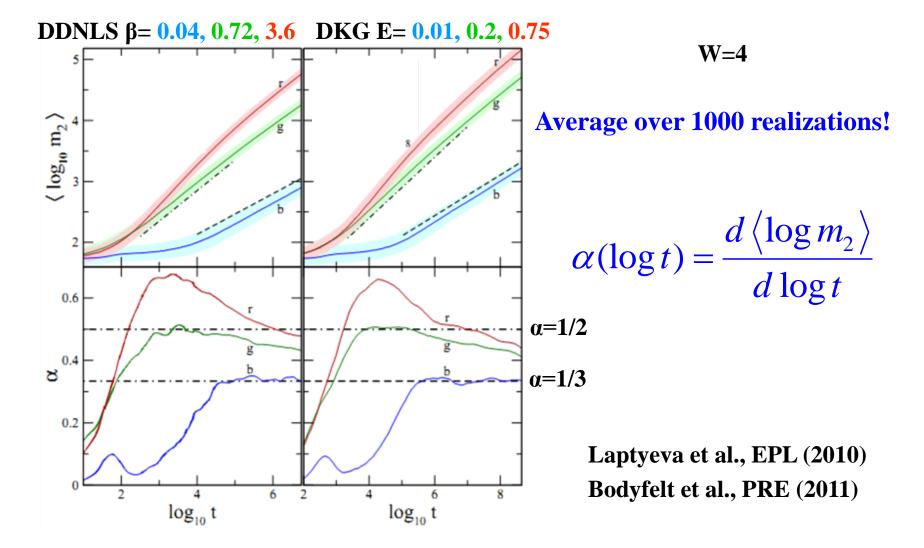
α=0.33±0.05 (DKG) α=0.33±0.02 (DDLNS)

Flach et al., PRL (2009) S. et al., PRE (2009)

DKG: Different spreading regimes



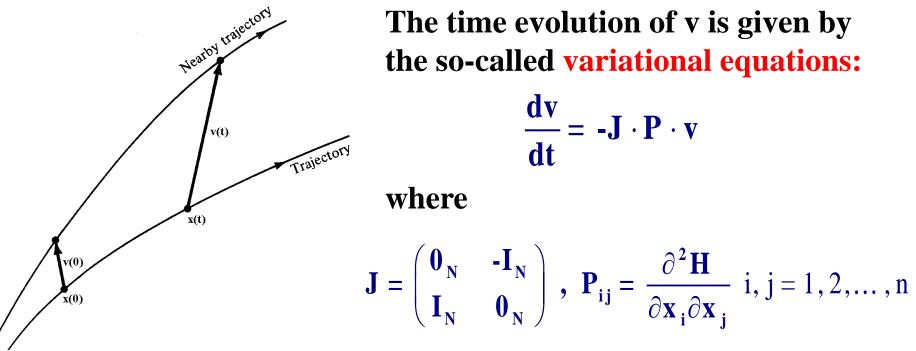
Crossover from strong to weak chaos (block excitations)



Variational Equations

We use the notation $\mathbf{x} = (q_1, q_2, ..., q_N, p_1, p_2, ..., p_N)^T$. The deviation vector from a given orbit is denoted by

$$\mathbf{v} = (\delta \mathbf{x}_1, \delta \mathbf{x}_2, \dots, \delta \mathbf{x}_n)^T$$
, with n=2N



Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93

Maximum Lyapunov Exponent

Chaos: sensitive dependence on initial conditions.

Roughly speaking, the Lyapunov exponents of a given orbit characterize the **mean exponential rate of divergence** of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with initial condition x(0) and an initial deviation vector from it v(0). Then the mean exponential rate of divergence is:

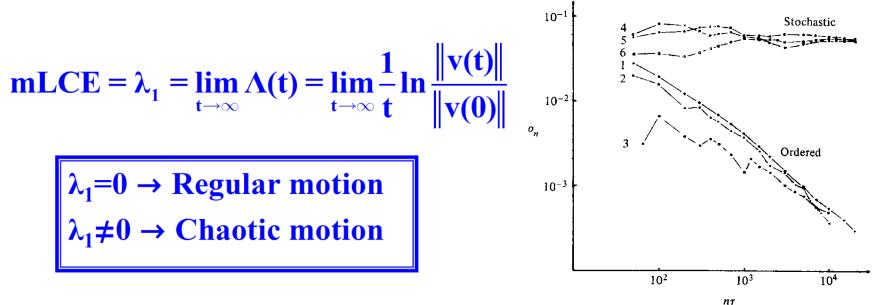


Figure 5.7. Behavior of σ_n at the intermediate energy E = 0.125 for initial points taken in the ordered (curves 1-3) or stochastic (curves 4-6) regions (after Benettin *et al.*, 1976).

Symplectic integration

We apply the 2-part splitting integrator ABA864 [Blanes et al., Appl. Num. Math. (2013) – Senyange & S., EPJ ST (2018)] to the DKG model:

$$H_{K} = \sum_{l=1}^{N} \left(\frac{p_{l}^{2}}{2} + \frac{\tilde{\varepsilon}_{l}}{2} u_{l}^{2} + \frac{1}{4} u_{l}^{4} + \frac{1}{2W} (u_{l+1} - u_{l})^{2} \right)$$

and the 3-part splitting integrator ABC⁶_[SS] [S. et al., Phys. Let. A (2014) – Gerlach et al., EPJ ST (2016) – Danieli et al., MinE (2019)] to the DDNLS system:

$$\begin{split} \hat{H}_{D} &= \sum_{l} \varepsilon_{l} \left| \psi_{l} \right|^{2} + \frac{\beta}{2} \left| \psi_{l} \right|^{4} - \left(\psi_{l+1} \psi_{l}^{*} + \psi_{l+1}^{*} \psi_{l} \right), \quad \psi_{l} = \frac{1}{\sqrt{2}} \left(q_{l} + i p_{l} \right) \\ H_{D} &= \sum_{l} \left(\frac{\varepsilon_{l}}{2} \left(q_{l}^{2} + p_{l}^{2} \right) + \frac{\beta}{8} \left(q_{l}^{2} + p_{l}^{2} \right)^{2} - q_{n} q_{n+1} - p_{n} p_{n+1} \right) \end{split}$$

By using the so-called Tangent Map method we extend these symplectic integration schemes in order to integrate simultaneously the variational equations [S. & Gerlach, PRE (2010) – Gerlach & S., Discr. Cont. Dyn. Sys. (2011) – Gerlach et al., IJBC (2012)].

Symplectic integration

For more information on the various symplectic integrators we can use for integrating

- the equations of motion, and
- the variational equations

of multidimensional Hamiltonian systems see **Poster 14:**

Efficient integration schemes for multidimensional disordered nonlinear Hamiltonian lattices

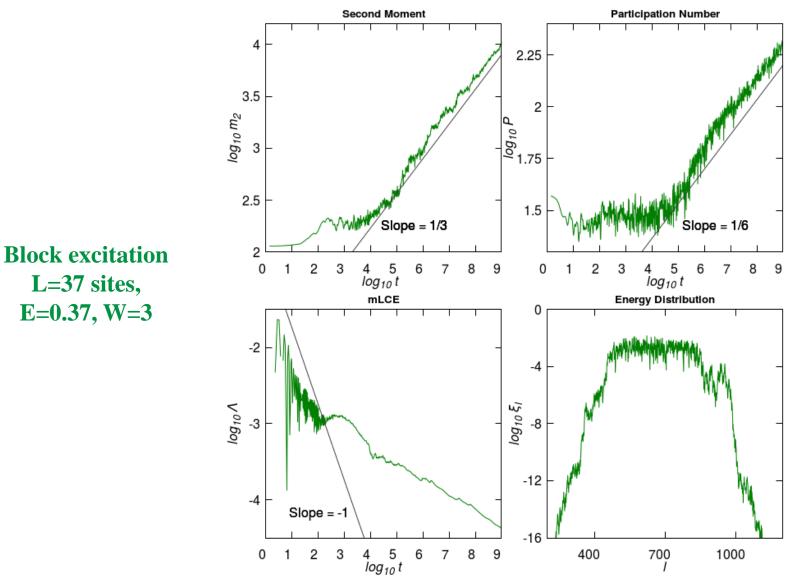
Bob Senyange $^{1\!,2}$ and Haris \mathbf{Skokos}^1

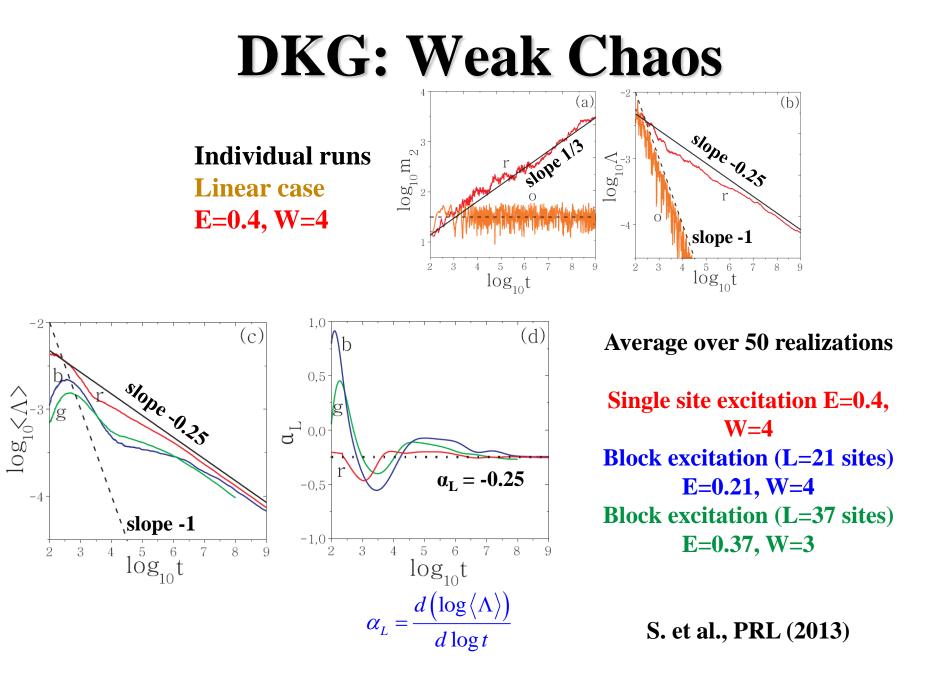
1. Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa.

2. Department of Mathematics, Muni University, Arua 725, Uganda.

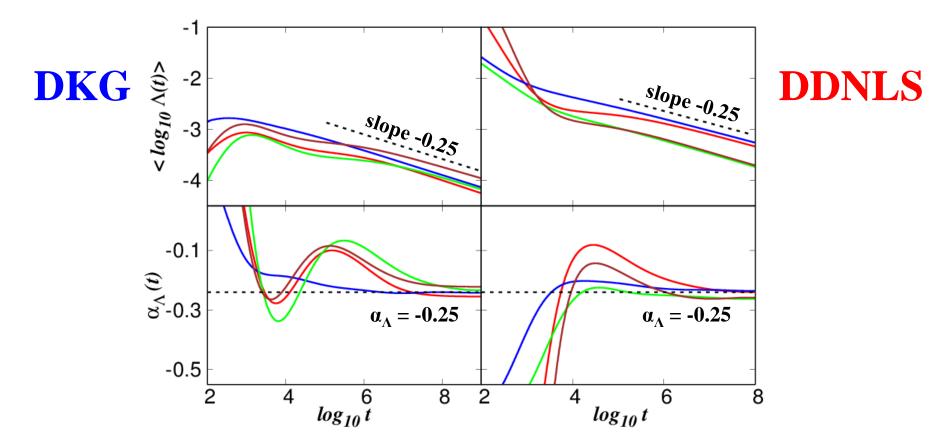
by Bob Senyange

DKG: Weak Chaos





Weak Chaos: DKG and DDNLS

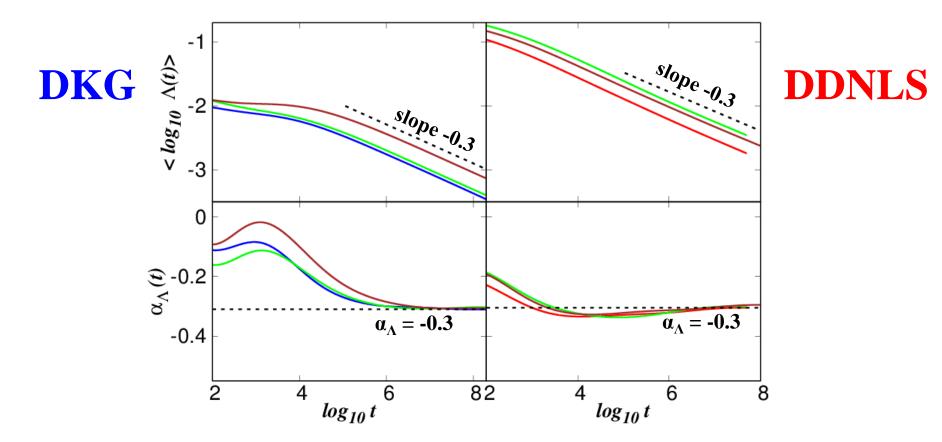


Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=37 sites) E=0.37, W=3BlockSingle site excitation E=0.4, W=4Block excitation (L=21 sites) E=0.21, W=4Block excitation (L=13 sites) E=0.26, W=5Block excitation (L=13 sites) E=0.26, W=5

Block excitation (L=21 sites) β=0.04, W=4 Single site excitation β=1, W=4 Single site excitation β=0.6, W=3 Block excitation (L=21 sites) β=0.03, W=3

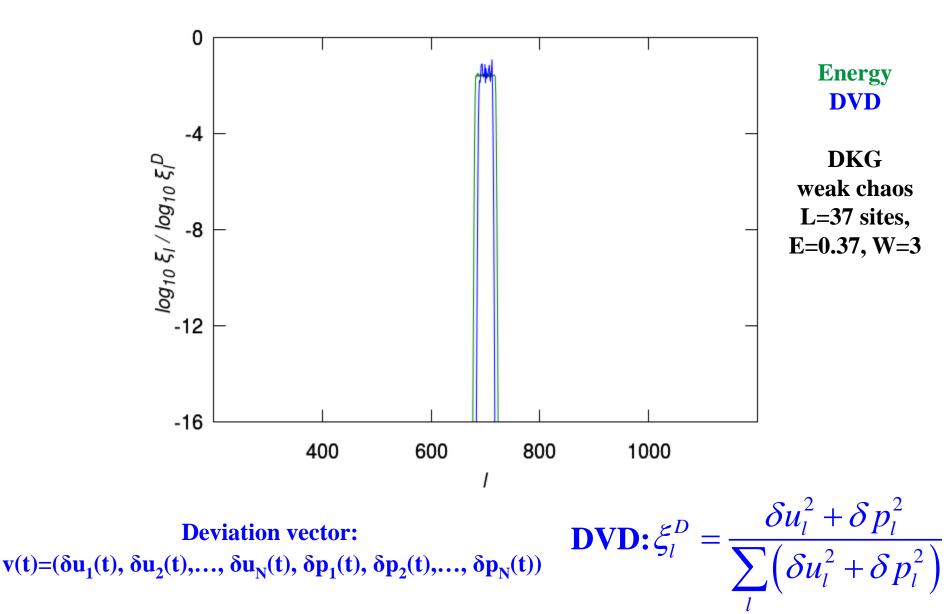
Strong Chaos: DKG and DDNLS



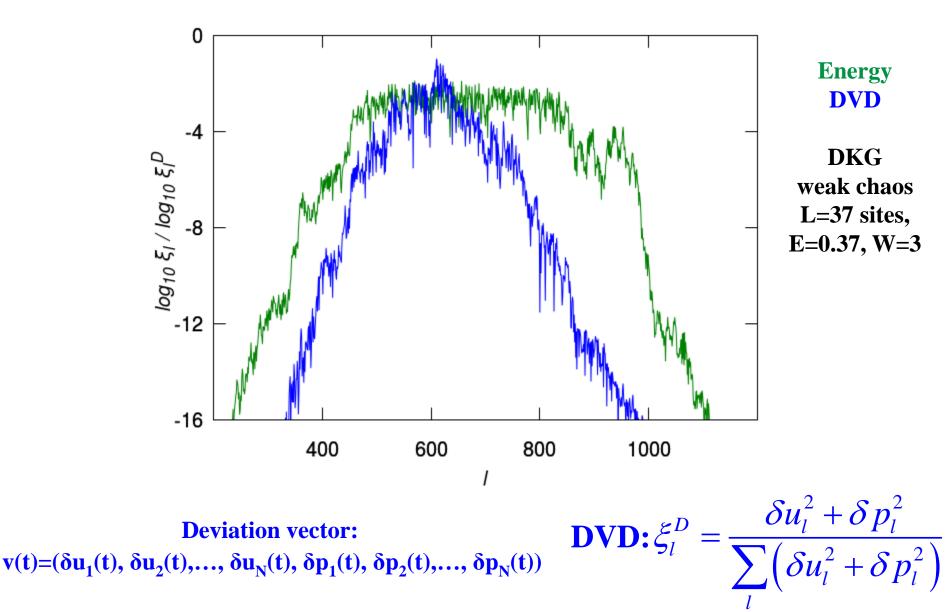
Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=83 sites) E=0.83, W=2Block excitation (L=21 sites) β =0.62, W=3.5Block excitation (L=37 sites) E=0.37, W=3Block excitation (L=21 sites) β =0.5, W=3Block excitation (L=83 sites) E=0.83, W=3Block excitation (L=21 sites) β =0.72, W=3.5

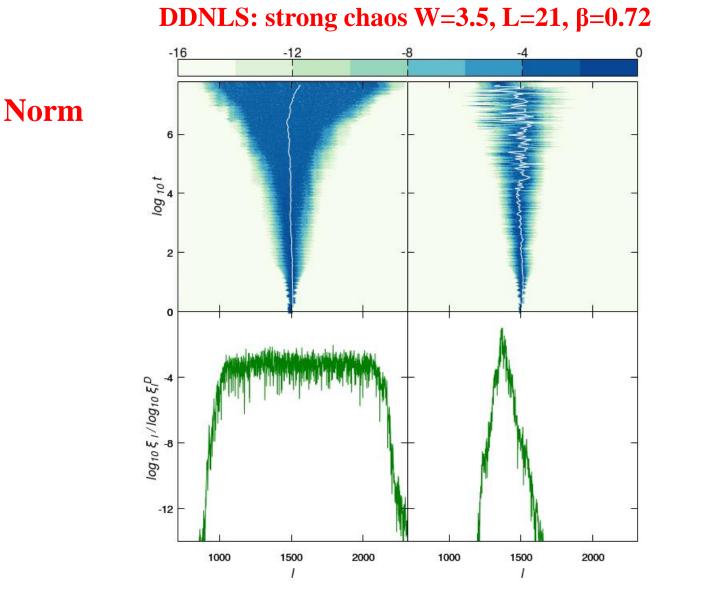
Deviation Vector Distributions (DVDs)



Deviation Vector Distributions (DVDs)

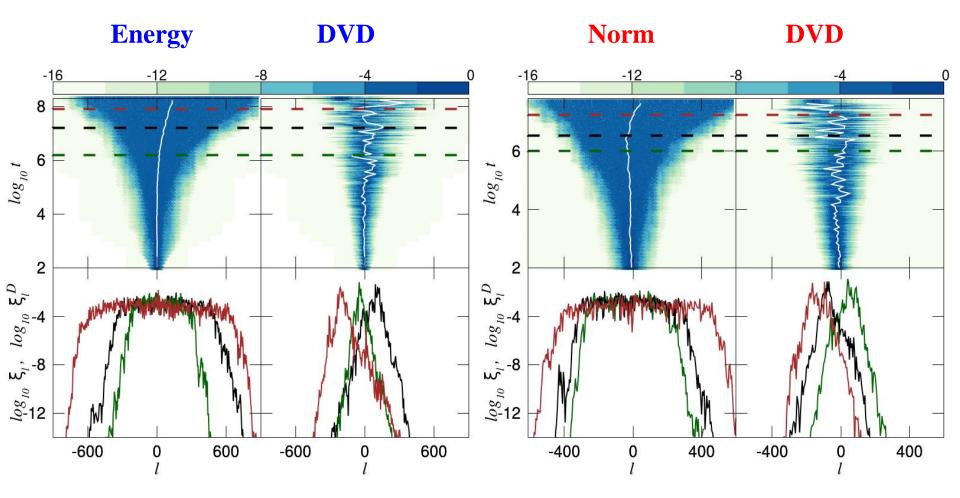


Deviation Vector Distributions (DVDs)



DVD

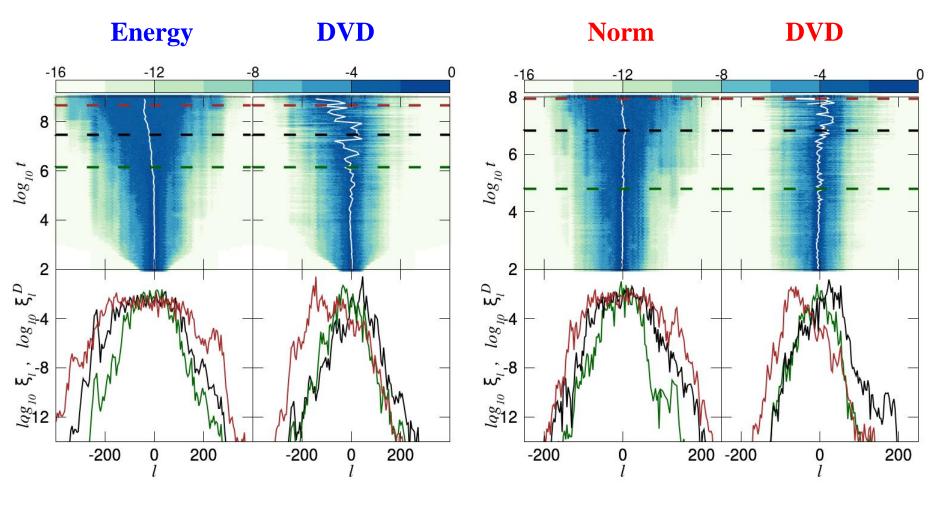
Strong Chaos: DKG and DDNLS



DKG: W=3, L=83, E=8.3

DDNLS: W=3.5, L=21, β=0.72

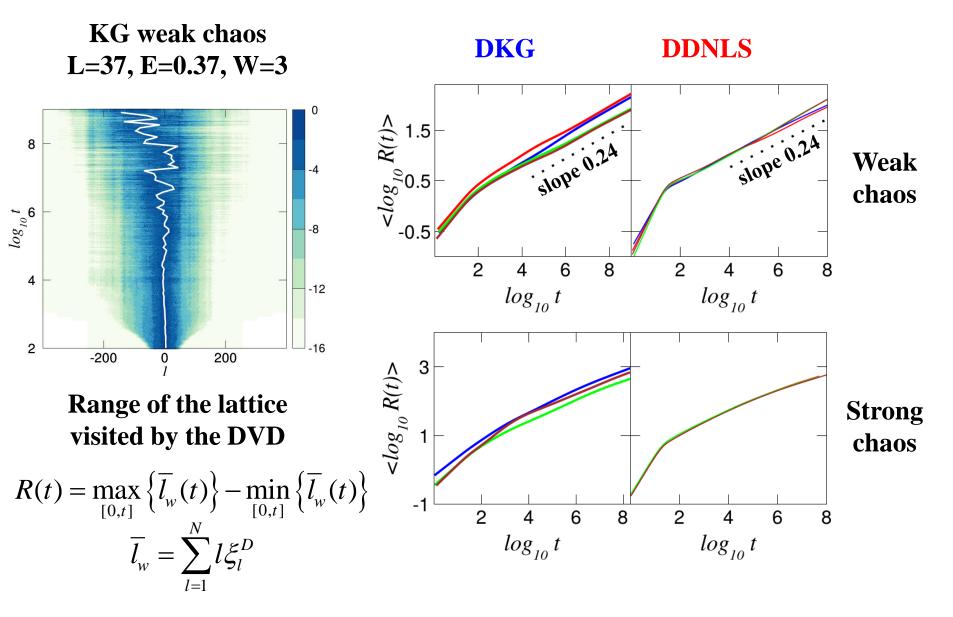
Weak Chaos: DKG and DDNLS



DKG: W=3, L=37, E=0.37

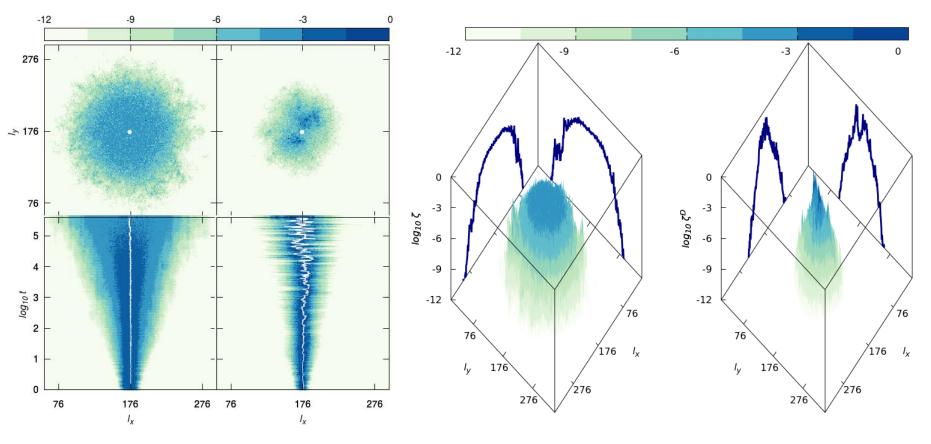
DDNLS: W=4, L=21, β=0.04

Characteristics of DVDs



Two-dimensional systems

DDNLS in 2 spatial dimensions (strong chaos) [Many Manda, Senyange, & S., PRE (2020)]



Norm

DVD

Norm

DVD

Two-dimensional systems

For more information on the chaotic dynamics of 2D disordered lattices attend the oral presentation of **Bertin Many Manda**

OC17 (Thursday 1 July at 16:00): Nonequilibrium chaos of wave spreading in two-dimensional disordered lattices

Summary

- Both the DKG and the DDNLS models show similar chaotic behaviors
- The mLCE and the DVDs show different behaviors for the weak and the strong chaos regimes.
- Lyapunov exponent computations show that:
 - ✓ Chaos not only exists, but also persists.
 - ✓ Slowing down of chaos does not cross over to regular dynamics.
 - ✓ Weak chaos: mLCE ~ t^{-0.25} Strong chaos: mLCE ~ t^{-0.3}
- The behavior of DVDs can provide information about the chaoticity of a dynamical system.
 - ✓ Chaotic hot spots meander through the system, supporting a homogeneity of chaos inside the wave packet.
- B. Senyange, B. Many Manda & Ch. S.: 'Characteristics of chaos evolution in onedimensional disordered nonlinear lattices', Phys. Rev. E, 98, 052229 (2018)
- B. Many Manda, B. Senyange & Ch. S.: 'Chaotic wave packet spreading in twodimensional disordered nonlinear lattices ', Phys. Rev. E, 101, 032206 (2020)

References

systems

- Flach, Krimer, S. (2009) PRL, 102, 024101 ٠
- S., Krimer, Komineas, Flach (2009) PRE, 79, 056211 •
- S., Flach (2010) PRE, 82, 016208 •
- Laptyeva, Bodyfelt, Krimer, S., Flach (2010) EPL, 91, 30001 •
- Bodyfelt, Laptyeva, S., Krimer, Flach (2011) PRE, 84, 016205 •
- Dynamics of disordered 107 lattices Bodyfelt, Laptyeva, Gligoric, S., Krimer, Flach (2011) IJBC, 21, 2107 •
- S., Gkolias, Flach (2013) PRL, 111, 064101 •
- Tieleman, S., Lazarides (2014) EPL, 105, 20001 •
- Antonopoulos, Bountis, S., Drossos (2014) Chaos, 24, 024405 •
- Antonopoulos, S., Bountis, Flach (2017) Chaos Sol. Fract., 104, 129 •
- Senyange, Many Manda, S. (2018) PRE, 98, 052229 •
- Many Manda, Senyange, S. (2020) PRE, 101, 032206 •
- S., Gerlach (2010) PRE, 82, 036704 ٠
- Gerlach, S. (2011) Discr. Cont. Dyn. Sys.-Supp., 2011, 475 ٠
- Gerlach, Eggl, S. (2012) IJBC, 22, 1250216 •
- Numerical integration of multidimensional Hamiltonian S., Gerlach, Bodyfelt, Papamikos, Eggl (2014) Phys. Lett. A, 378, 1809 ٠
- Gerlach, Meichsner, S. (2016) Eur. Phys. J. Sp. Top., 225, 1103 •
- Senyange, S. (2018) Eur. Phys. J. Sp. Top., 227, 625 ٠
- Danieli, Many Manda, Mithun, S. (2019) MinE, 1, 447 ٠

Chaotic dynamics of nonlinear Hamiltonian systems

Oral presentation of Malcolm Hillebrand OC17 (Thursday 1 July at 16:30): Chaotic Dynamics in a Planar Model of Graphene

Poster presentation of Henok Tenaw Moges Poster 15: On the behavior of the Generalized Alignment Index (GALI) method for regular motion in multidimensional Hamiltonian systems

Henok Tenaw Moges¹, Thanos Manos², Charalampos Skokos¹