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Interplay of disorder and nonlinearity

Waves in nonlinear disordered media – localization or 
delocalization?

Theoretical and/or numerical studies [Shepelyansky, PRL 

(1993) – Molina, Phys. Rev. B (1998) – Pikovsky & 

Shepelyansky, PRL (2008) – Kopidakis et al., PRL (2008) –

Flach et al., PRL (2009) – S. et al., PRE (2009) – Mulansky & 

Pikovsky, EPL (2010) – S. & Flach, PRE (2010) – Laptyeva et 

al., EPL (2010) – Mulansky et al., PRE & J.Stat.Phys. (2011) –

Bodyfelt et al., PRE (2011) – Bodyfelt et al., IJBC (2011)]

Experiments: propagation of light in disordered 1d waveguide 
lattices [Lahini et al., PRL (2008)]

Waves in disordered media – Anderson localization [Anderson, 

Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)] 



The disordered Klein – Gordon (DKG) model
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with fixed boundary conditions u0=p0=uN+1=pN+1=0. Typically N=1000.

Parameters: W and the total energy E.

The disordered discrete nonlinear Schrödinger 

(DDNLS) equation
We also consider the system:
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Conserved quantities: The energy and the norm              of the wave packet.
2
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Linear case (neglecting the term ul
4/4) 

Ansatz: ul=Al exp(iωt). Normal modes (NMs) Aν,l - Eigenvalue problem: 

λAl = εlAl - (Al+1 + Al-1) with
2

l lλ = Wω -W - 2,    ε = W(ε - 1)



Distribution characterization

We consider normalized energy distributions

and norm distributions




ν
ν

mm

E
z

E

with ( )
2

22 4ν ν
ν ν ν ν+1 ν

p ε 1 1
E = + u + u + u - u

2 2 4 4W

Second moment: ( )
N

2

2 ν

ν=1

m = ν - ν z 
N

ν

ν=1

ν = νzwith

Participation number: 


N 2

νν=1

1
P =

z

measures the number of stronger excited modes in zν. 

Single site P=1. Equipartition of energy P=N.

for the DDNLS system.
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Scales
Linear case: , width of the squared frequency spectrum:

Average spacing of squared eigenfrequencies of NMs within the range of a 

localization volume: 

Nonlinearity induced squared frequency shift of a single site oscillator

The relation of the two scales                  with the nonlinear 
frequency shift δl determines the packet evolution.
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Different Dynamical Regimes
Three expected evolution regimes [Flach, Chem. Phys (2010) - S. & Flach, 

PRE (2010) - Laptyeva et al., EPL (2010) - Bodyfelt et al., PRE (2011)] 

Δ: width of the frequency spectrum, d: average spacing of interacting modes, 

δ: nonlinear frequency shift. 

Weak Chaos Regime: δ<d,     m2  ~ t1/3

Frequency shift is less than the average spacing of interacting modes. NMs are 

weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & 

Shepelyansky, PRL (2008)].

Intermediate Strong Chaos Regime: d<δ<Δ,     m2 ~ t1/2 →  m2 ~ t1/3

Almost all NMs in the packet are resonantly interacting. Wave packets initially 

spread faster and eventually enter the weak chaos regime.

Selftrapping Regime: δ>Δ
Frequency shift exceeds the spectrum width. Frequencies of excited NMs are 

tuned out of resonances with the nonexcited ones, leading to selftrapping, while a 

small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)].



Single site excitations

No strong chaos regime

In weak chaos regime we 

averaged the measured 

exponent α (m2~tα) over 

20 realizations:

α=0.33±0.05 (DKG)

α=0.33±0.02 (DDLNS)

Flach et al., PRL (2009) 

S. et al., PRE (2009)

DDNLS W=4, β= 0.1, 1, 4.5 DKG W = 4, E = 0.05, 0.4, 1.5

slope 1/3 slope 1/3

slope 1/6 slope 1/6



DKG: Different spreading regimes



Crossover from strong to weak chaos

(block excitations)

W=4

Average over 1000 realizations!
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DDNLS β= 0.04, 0.72, 3.6 DKG E= 0.01, 0.2, 0.75

Laptyeva et al., EPL (2010) 

Bodyfelt et al., PRE (2011)



Variational Equations

We use the notation x = (q1,q2,…,qN,p1,p2,…,pN)T. The

deviation vector from a given orbit is denoted by

v = (δx1, δx2,…,δxn)T , with n=2N

The time evolution of v is given by 

the so-called variational equations:
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Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93



Maximum Lyapunov Exponent

Roughly speaking, the Lyapunov exponents of a given orbit characterize the 

mean exponential rate of divergence of trajectories surrounding it. 

Chaos: sensitive dependence on initial conditions.

Consider an orbit in the 2N-dimensional phase space with initial condition 

x(0) and an initial deviation vector from it v(0). Then the mean exponential 

rate of divergence is: 



Symplectic integration
We apply the 2-part splitting integrator ABA864 [Blanes et al., Appl. 

Num. Math. (2013) – Senyange & S., EPJ ST (2018)] to the DKG model:
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and the 3-part splitting integrator ABC6
[SS] [S. et al., Phys. Let. A (2014) –

Gerlach et al., EPJ ST (2016) – Danieli et al., MinE (2019)] to the DDNLS 

system:
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By using the so-called Tangent Map method we extend these symplectic

integration schemes in order to integrate simultaneously the variational

equations [S. & Gerlach, PRE (2010) – Gerlach & S., Discr. Cont. Dyn. Sys.

(2011) – Gerlach et al., IJBC (2012)].



Symplectic integration
For more information on the various symplectic integrators we can use for

integrating

• the equations of motion, and

• the variational equations

of multidimensional Hamiltonian systems see Poster 14:

by Bob Senyange



DKG: Weak Chaos 

Block excitation 

L=37 sites, 

E=0.37, W=3



DKG: Weak Chaos

Individual runs

Linear case

E=0.4, W=4

Average over 50 realizations

Single site excitation E=0.4, 

W=4

Block excitation (L=21 sites) 

E=0.21, W=4

Block excitation (L=37 sites) 

E=0.37, W=3

S. et al., PRL (2013)
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Weak Chaos: DKG and DDNLS

DKG DDNLS

Block excitation (L=37 sites) E=0.37, W=3

Single site excitation E=0.4, W=4

Block excitation (L=21 sites) E=0.21, W=4 

Block excitation (L=13 sites) E=0.26, W=5

Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=21 sites) β=0.04, W=4

Single site excitation β=1, W=4

Single site excitation β=0.6, W=3

Block excitation (L=21 sites) β=0.03, W=3

αΛ = -0.25 αΛ = -0.25



Strong Chaos: DKG and DDNLS

DKG DDNLS

Block excitation (L=83 sites) E=0.83, W=2

Block excitation (L=37 sites) E=0.37, W=3

Block excitation (L=83 sites) E=0.83, W=3

Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=21 sites) β=0.62, W=3.5

Block excitation (L=21 sites) β=0.5, W=3

Block excitation (L=21 sites) β=0.72, W=3.5

αΛ = -0.3 αΛ = -0.3



Deviation Vector Distributions (DVDs)

Deviation vector: 

v(t)=(δu1(t), δu2(t),…, δuN(t), δp1(t), δp2(t),…, δpN(t)) ( )

2 2

2 2

D l l
l

l l

l

u p

u p

 


 

+
=

+
DVD:

Energy

DVD

DKG

weak chaos

L=37 sites, 

E=0.37, W=3



Deviation Vector Distributions (DVDs)

Deviation vector: 

v(t)=(δu1(t), δu2(t),…, δuN(t), δp1(t), δp2(t),…, δpN(t)) ( )
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Deviation Vector Distributions (DVDs)

Norm

DDNLS: strong chaos W=3.5, L=21, β=0.72

DVD



Strong Chaos: DKG and DDNLS

Energy DVD Norm DVD

DKG: W=3, L=83, E=8.3 DDNLS: W=3.5, L=21, β=0.72



Weak Chaos: DKG and DDNLS

Energy DVD Norm DVD

DKG: W=3, L=37, E=0.37 DDNLS: W=4, L=21, β=0.04



Characteristics of DVDs
KG weak chaos 

L=37, E=0.37, W=3

Range of the lattice 

visited by the DVD
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Two-dimensional systems
DDNLS in 2 spatial dimensions (strong chaos)

[Many Manda, Senyange, & S., PRE (2020)]

Norm NormDVD DVD



Two-dimensional systems
For more information on the chaotic dynamics of 2D disordered lattices

attend the oral presentation of Bertin Many Manda

OC17 (Thursday 1 July at 16:00): 

Nonequilibrium chaos of wave spreading in two-dimensional disordered 

lattices



Summary
• Both the DKG and the DDNLS models show similar chaotic behaviors

• The mLCE and the DVDs show different behaviors for the weak and the 

strong chaos regimes.

• Lyapunov exponent computations show that: 

✓ Chaos not only exists, but also persists.

✓ Slowing down of chaos does not cross over to regular dynamics.

✓ Weak chaos: mLCE ~ t-0.25 - Strong chaos: mLCE ~ t-0.3

• The behavior of DVDs can provide information about the chaoticity of a 

dynamical system.

✓ Chaotic hot spots  meander through the system, supporting a 

homogeneity of chaos inside the wave packet.

B. Senyange, B. Many Manda & Ch. S.: ‘Characteristics of chaos evolution in one-

dimensional disordered nonlinear lattices’, Phys. Rev. E, 98, 052229 (2018)

B. Many Manda, B. Senyange & Ch. S.: ‘Chaotic wave packet spreading in two-

dimensional disordered nonlinear lattices ’, Phys. Rev. E, 101, 032206 (2020)
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Chaotic dynamics of nonlinear  

Hamiltonian systems 

Oral presentation of Malcolm Hillebrand

OC17 (Thursday 1 July at 16:30): 

Chaotic Dynamics in a Planar Model of Graphene

Poster presentation of Henok Tenaw Moges
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